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Dislocation kink solitons in disordered solid solutions provide an example of quasiparticles showing anoma-
lous kinetics—i.e., the nonlinear dependence of the displacement x on the time t, x� t� ���1�. To describe the
dynamic phase transition from the ordinary linear to anomalous regime, the dynamics of a quasiparticle in an
energy landscape that performs a correlated random walk on the energy scale was theoretically studied. The
phase diagram was characterized by the calculated temperature dependence of the threshold driving force Fth

below which the average velocity of quasiparticles vanishes. The exponent � of the kinetic equation for the
anomalous phase, x� t�, was determined by simple statistical arguments using the concepts of the “optimal
fluctuation method.” The dependence of the threshold driving force Fth on the concentration of solute atoms
and statistical properties of a random energy landscape relevant to disordered solid solutions was calculated.
The correlations between steps of the random potential were shown to modify the concentration dependence of
Fth, thereby providing a qualitative explanation of experimental data on the dislocation pinning in solid
solutions.
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I. INTRODUCTION

The problem of mobility of various kinds of particles in a
disordered media has recently received considerable atten-
tion in the physics and mathematics communities �1–16� �see
also references therein�. As shown for these systems, a spe-
cific phase transition accompanied by a change in the mode
of particle motion is possible due to a broad random scatter
of the delay times at the fluctuation barriers. Thus, the drift
of a particle changes from usual linear in time to sublinear,
the latter being characterized by a slower increase in the
displacement x with time t, x� t� ���1�. The study of this
phenomenon has stimulated interest in the basic concepts of
the theory of irreversible processes. In mathematical papers,
as well as in some physical publications, the existence of an
extended slowly decreasing delay time spectrum is often
only postulated. A deeper understanding of the factors re-
sponsible for the anomalous behavior can be reached by ob-
taining the true spectrum from the basic principles of statis-
tical physics.

Keeping in mind the applications to physical systems, it is
reasonable to begin with a study of the energy landscape
determining the potential relief of the particle motion. In a
disordered medium, there are random variations in the poten-
tial relief giving rise to barriers that trap the particle. A broad
scatter of delay times at traps is associated with a high sen-
sitivity of the thermally activated escape rate to variations in
the barrier height. The use of methods of statistical physics
allows calculations of the explicit dependence of the kinetic
characteristics on the parameters governing the phenomenon
for a particular system. In the present paper, this approach is
employed to analyze the motion of dislocation kink solitons
in disordered solid solutions.

A generally tacitly assumed prerequisite for the normal
linear motion mode is the so-called “self-averaging” of the
time of overcoming obstacles after passing a sufficiently
large number of random barriers along a long path length of
the particle. In this case, the total time of motion, t, consist-
ing mainly �neglecting the time of free motion between the
barriers� of a large number of delays at individual random

obstacles, �i, t=�1
N�i, is approximately equal to N���, where

N is the number of obstacles in the path of the particle and
��� is the average delay time at one obstacle. There is also
the rigorous mathematical formulation of this prerequisite
based on the law of large numbers �see, e.g., �17��. However,
the average delay time exists only if the delay time spectrum
P��� decreases rather rapidly at long �, not slower than 1 /��

with ��1. In most cases, where the scatter of the delay time
is caused by a superposition of local barriers or wells, this
condition is fulfilled. As a consequence, it follows from the
proportionality of the time of motion and the number of ob-
stacles, N, which is, in turn, proportional to the path length x,
that the spatial homogeneity is restored after the statistical
averaging. As a result, the linear kinetic dependence of the
particle displacement x on the time t, x= �V�t, takes place,
where �V� is the average velocity. On the contrary, if the
average delay time diverges due to a slow decrease of the
delay time spectrum, the self-averaging is violated and the
time of motion is of the order of the longest delay time at the
strongest obstacle along the path length, t=�1

N�i��max. In
this case, the spatial homogeneity is not restored after the
statistical averaging and a dynamic phase transition from the
kinetics linear in time to nonlinear kinetics would be ex-
pected.

For long delay times to be sufficiently probable, special
factors enhancing the role of fluctuations are required. Such
factors were revealed in �7,11� for kink-soliton-type quasi-
particles �see, e.g., �18,19��, as exemplified by dislocation
kinks �20� in crystals with randomly distributed impurity at-
oms. While linear topological defects in crystal lattices, dis-
locations, are responsible for the mechanical properties of
crystalline materials, kinks in a dislocation line, at the second
level of hierarchy, are responsible for the dynamics of dislo-
cations in themselves. Being the earliest studied and most
evident example of systems exhibiting the dynamic phase
transition from the linear to nonlinear drift, the dislocation
kink is by far not unique. Numerous examples from various
fields of physics, chemistry, biology, geology, etc., were
documented �1–16�. The so-called dislocation pinning may
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be mentioned as a practical application of the considered
phenomenon. A considerable retardation of the kink motion
at a load lower than a certain threshold value Fth influences
the mobility of a dislocation as a whole. For the stable op-
eration of semiconductor devices, it is of great importance to
prevent or, at least, retard the dislocation motion in �see, e.g.,
�21��. The range of subthreshold loads provides a “window”
within which it is possible, to a considerable extent, to avoid
the movement and multiplication of dislocations. The tem-
perature dependence of the threshold load was used �22� to
predict safe regimes of the thermal treatment of silicon wa-
fers at their processing. In �23�, the evolution of kink pairs
on dislocations in Ge single crystals under a two-level inter-
mittent load was studied and experimental evidence was ob-
tained for the theoretically predicted anomalous nonlinear
kink drift.

The calculations of Fth were carried out in �7,11� for low
concentrations c of foreign atoms, c�1, disregarding their
mutual interactions. A generalization of the previous calcu-
lations accounting for the role of interactions of atoms within
the dislocation core is required for the description of experi-
ments on solid solutions with a wide variation of compo-
nents. This is especially important for the characterization of
the anomalous mobility governed by fluctuations with strong
deviations from the average density of solute atoms. Hence,
a consideration of the anomalous kinetics in a new wide
class of correlated random potentials is necessary. This is the
aim of the present paper. The image of a dislocation kink will
be used for clarity. However, after the derivation of the
model potential, one may forget about the specific character
of the dislocation kink for the rest of the paper. The derived
class of random potentials is rather general and can be used
for the description of different one-dimensional systems.

II. RANDOM WALK ALONG THE ENERGY
SCALE

Due to the periodicity of the crystal lattice, there is a set
of periodically repeated energetically favorable positions for
a dislocation, which are aligned along crystallographic direc-
tions. A dislocation kink connects branches of a dislocation
located in neighboring valleys of the periodic crystalline re-
lief. The dislocation transition from one valley to another
proceeds via a lateral displacement of the kink, as shown in
Fig. 1 �for details, see �20��. This determines the important
role of kinks in the dislocation dynamics.

Randomly distributed foreign atoms violate the equiva-
lence of dislocation states in different valleys of the crystal-
line relief. The energy of the dislocation core walks along the
energy scale in the course of kink displacements, being
shifted up and down �the shifts are of the order of the bind-
ing energy u of a foreign atom to the dislocation core� when
the core randomly receives or loses the foreign atom �see
Fig. 1�. Therefore, there are not only local interactions be-
tween the moving kink and encountered foreign atoms, but
also an additional contribution to the energy of the
“dislocation�kink” system, which is proportional to the ran-
dom difference �N�x� between the numbers of foreign atoms
in the conjugated valleys along the kink path length x. Actu-

ally, the energy of the total dislocation�kink system plays
the role of the potential in which the kink migrates. This
potential is characterized by a partial “memory” of encoun-
tered foreign atoms. The random contribution to the energy
integrated along the path length is a source of high random-
ness of the energy landscape in which the kink migrates �see
Fig. 2�, and it results in a fundamental distinction between
the kink dynamics and the ordinary dynamics of localized
particles. For dilute solid solutions, the mean distance be-
tween solute atoms is long and their mutual interactions may
be ignored. In this case, the “steps” of the random walk
potential along the energy scale may be considered as inde-
pendent. This is the random potential with well-known sta-
tistical properties �7,24�. The scope of fluctuations in the
energy landscape increases with the kink displacement x as

u	x / l̄, where l̄ is the mean distance between foreign atoms
along the valley of the crystal lattice. This is the physical
reason for the appearance of a noticeable probability of high
barriers and long delay times.

From the point of view of applications, the statistical
properties of the random potentials reveal themselves differ-

FIG. 1. A dislocation kink moving through randomly distributed
solute atoms �represented by circles�. The lateral displacement of
the kink leads to a shift of the dislocation to another valley of the
crystal lattice by the lattice period h. The kink transition via the
subsequent positions 1-2-3 leads to either increase or decrease in
the dislocation energy depending on the location of a foreign atom
passed by the kink in a particular valley.

FIG. 2. A particular realization of the energy landscape formed
by a superposition of the contributions of the randomly fluctuating
density of solute atoms and the driving force. The height �E and
the size l of the strongest barrier to the kink motion are marked.
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ently in different parameter ranges. For example, at high
temperature kT�u, the random walk potential, which per-
forms discrete steps when the kink encounters foreign atoms,
acts similarly to the continuous so-called “Brownian poten-
tial,” which “diffuses” with the “diffusion coefficient” DE
=cu2 along the energy scale. For this case, the exact solution
describing the density of probability P2�t�=dP�t� /dt of delay
times was calculated in �7� �see also �4��. In the notation of
the present paper, it takes the form

P2�t� =
exp�− �1�/t�

�1�	����t/�1��
1+� , �1�

where �=FakT / �cu2�, �1�=a�kT�3 / �DkFcu2�, k is the Boltz-
mann constant, T is the temperature, a is the lattice period
along the dislocation line, Dk is the kink diffusivity, 	��� is
the gamma function, and F is the driving force. In the case of
a dislocation kink, the driving force F=
bh, where 
 is the
corresponding component of the applied stress, b is the Bur-
gers vector magnitude of the dislocation, and h is the height
of the kink equal to the distance between the periodic valleys
of the crystalline relief in the slip plane �20�.

In �24�, the theory of anomalous kinetics was extended to
low temperatures kT�u. In the low-temperature range, the
characteristic parameters of the anomalous kinetics � and the
threshold driving force Fth in solid solutions were demon-
strated to considerably differ from the Brownian case. Due to
this sensitivity of the anomalous kinetics to detailed param-
eters of the random potential, one may expect that, if the
solid solution is not dilute, the correlations between subse-
quent “steps” in the random walk along the energy scale
would be taken into account.

III. MODEL DESCRIPTION

Let us consider a solid solution A1−cBc, where c is the
concentration of B-type atoms per site of the crystal lattice in
the matrix of A-type atoms. The solid solution is supposed to
be disordered with a “frozen” random distribution of atoms
over the crystal lattice sites. The energy of the dislocation
core depends on the amount and, due to the difference in
interactions with the core of various combinations of solute
atoms, on the configurations of both types of atoms along the
dislocation line. The interactions between solute atoms are
supposed to belong to short-range interactions. This means
that their contribution to the energy of the dislocation core
changes only when these atoms occupy the neighboring lat-
tice sites. Let us denote the configuration of atoms within the
first of the kink-connected valleys by the symbol 	1 and the
configuration within the second valley by the symbol 	2. The
corresponding energies of the dislocation states are denoted
as E
	1� and E
	2�. In terms of this model, the energies of
dislocations located in different valleys of the crystal lattice
are supposed to be statistically independent. As to the energy
of the dislocation core itself, its modification by both isolated
solute atoms �in our case, B atoms� and their complexes
composed of any number of neighboring atoms along the
dislocation line should be taken into account.

The change in the energy of the dislocation segment E
	�
caused by B atoms may be written as a sum of the bond

energies of the neighboring atoms counted from the A-A-type
bond energies. Let us ascribe the energy uAB to A-B- or
B-A-type bonds �assumed, for simplicity, to be equal� and the
energy uBB to B-B-type bonds. The configuration 	 can be
characterized by a set of the random occupation numbers of
sites 
ni� by solute atoms �B type�. If the ith site is occupied
by a solute atom, then ni=1 �with the probability c�; other-
wise, ni=0 �with the probability 1−c�. Obviously, the total
number n of solute atoms in the dislocation segment of
length l=aN is equal to n=�1

Nni. Here N is the number of
sites in the segment. The change in the energy of the dislo-
cation segment E
	� due to the presence of solute atoms can
be written using the occupation numbers in an explicit form

E
	� = 2uAB�
i=1

N

ni + �uBB − 2uAB��
i=1

N−1

nini+1. �2�

With the relationship between the parameters uBB=2uAB, the
quadratic over ni contributions to E
	� are absent. This more
simple random potential has been studied earlier �7,24�. In
the presence of the quadratic terms over ni, we shall refer to
E
	� as the random potential involving “interactions” be-
tween solute atoms in solid solution. The parameters uBB
�2uAB and uBB�2uAB will model the attraction and repul-
sion, respectively, between B atoms at dislocations.

IV. AVERAGE TIME OF RANDOM BARRIER
OVERCOMING

To calculate the time � required for a kink to overcome a
barrier formed by a fluctuation of the density of solute atoms,
the following general formula for the time of the thermally
activated transition of a particle through a potential barrier
�25� can be used:

� =
x1

Dk
�

0

�

exp
�E�x�
kT

�dx . �3�

Here, Dk is the diffusivity of the particle �in the case under
consideration, of the kink�, x1 is the coefficient of the length
dimension associated with the range of prebarrier state local-
ization, and �E�x� is the profile of the potential hindering the
particle displacement. In the case under study, �E�x�
=E
	2�−E
	1�−Fx is the energy difference of the disloca-
tion segments in the valleys of the crystalline relief between
which the transition occurs. In addition, the work of the driv-
ing force F is taken into account. When the obstacle to be
overcome is formed by a single solute atom �according to
Eq. �2�, it creates a step of the height 2uAB�, the metastable
prebarrier state is localized at the size x1=kT /F and the de-
lay time �1 calculated according to Eq. �3� is equal to

�1 =
�kT�2

DkF
2 exp
2uAB

kT
� . �4�

The average velocity of the kink, �V�, accounting for the
contribution of delays at isolated solute atoms can be calcu-
lated as
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�V� =
V0

1 + V0�1/l̄
, �5�

where V0 is the velocity of free motion between obstacles. As
follows from Eq. �5�, for sufficiently high concentrations of

solute atoms, �V�� l̄ /�1, and the velocity of the kink is
mainly limited by the obstacles to be overcome. However,
obstacles can also be of a combined type, resulting from a
random accumulation of solute atoms. Their contribution
drastically changes the kink dynamics and violates the mode
of motion linear in time and characterized by a finite nonzero
velocity.

Let us calculate the average delay time at a barrier formed
by an arbitrary fluctuation of the density of solute atoms. For
this purpose, let us average the random integrand in Eq. �3�:

��� =
x1

Dk
�

0

� �exp
E
	2� − E
	1�
kT

��exp
−
Fx

kT
�dx . �6�

The averaging is performed by summing over all possible
distributions of B atoms over the lattice sites accounting for
the corresponding probability determined by their concentra-
tion c. Possible statistical variations of x1 in the preexponen-
tial factor are neglected. Although the averaged energies
E
	1� and E
	2� in different valleys of the crystal lattice
coincide due to the statistical homogeneity of the solid solu-
tion, the averaging of the nonlinear exponential terms results
in the effective dragging force exerted on kinks.

When calculating the averaged exponential in Eq. �6�, it is
reasonable to use the transfer matrix method elaborated for
the Ising model �see, e.g., �26��. Due to the supposed statis-
tical independence of the energies E
	1� and E
	2�, the av-
erage of interest is split into the product of the averages
�exp�E
	� /kT�� and �exp�−E
	� /kT��. Let us introduce an
auxiliary quantity ZN

� , which is a sum of the terms
exp�E
	� /kT� calculated over all configurations 	 account-
ing for their statistical weights for a definite state of the last
link. There are two such states labeled by the index �, �=0
and �=1. The value of � coincides with the occupation num-
ber of the last site by a B atom.

The quantities ZN
� obey recurrence relationships for dislo-

cation segments with a length differing by one link:

ZN+1
0 = �1 − c�ZN

0 + cZN
1 exp�− uAB/kT� , �7�

ZN+1
1 = �1 − c�ZN

0 exp�− uAB/kT� + cZN
1 exp�− uBB/kT� .

�8�

Introducing the transfer matrix V�
, the elements of which
are clear from Eqs. �7� and �8�, it is possible to rewrite the
recurrence relationships as

ZN+1
� = �




V�
ZN

. �9�

The N-fold application of Eq. �9� enables us to express ZN+1
�

via the first-link state vector Z1
� and the product of transfer

matrices

ZN+1
� = �




�VN��
Z1

. �10�

The dependence ZN
� on N for large N, as is known from

matrix theory, is given by the factor �1
N, where �1 is the

largest eigenvalue of the transfer matrix. Indeed, for large N
the effect of the boundary conditions becomes negligible and
VN depends on N in the same way as this matrix trace
Tr�VN�=�1

N+�2
N with the predominant contribution of the

largest eigenvalue �1.
The largest eigenvalue of the matrix V is easily deter-

mined and equal to

�1 =
1

2
�1 − c + c exp
uBB

kT
� + ��1 − c − c exp
uBB

kT
��2

+ 4c�1 − c�exp
2uAB

kT
��1/2� . �11�

Therefore, we obtain

�exp�E
	�/kT�� � �1
N. �12�

To calculate the second average of interest, �exp�−E
	� /
kT��, it is sufficient to change signs at uAB and uBB in Eq.
�11�,

�exp�− E
	�/kT�� � �1�
N,

where

�1� =
1

2
�1 − c + c exp
−

uBB

kT
� + ��1 − c − c exp
−

uBB

kT
��2

+ 4c�1 − c�exp
−
2uAB

kT
��1/2� . �13�

Collecting all factors providing the dependence of the inte-
grand in Eq. �6� on N�x /a, we obtain

exp
�x/a�ln��1�1�� − Fx/kT� . �14�

Hence, the integral converges for F�Fth, where

Fth =
kT

a
ln��1�1�� =

kT

a
ln�1

4
�1 − c + c exp
uBB

kT
� + ��1 − c − c exp
uBB

kT
��2

+ 4c�1 − c�exp
2uAB

kT
��1/2�

��1 − c + c exp
−
uBB

kT
� + ��1 − c − c exp
−

uBB

kT
��2

+ 4c�1 − c� exp
−
2uAB

kT
��1/2�� , �15�
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and diverges for F�Fth. The latter means increasing to in-
finity the average time of overcoming barriers against the
kink migration formed by the fluctuations of solute atoms
density and, hence, the vanishing of the average kink motion
velocity. For F�Fth and F→Fth, the average time of the
transition over a barrier given by Eq. �6� increases as ���
�1 / �1−Fth /F�. Correspondingly, in this case the average
kink velocity is approximately equal to

�V� �
l̄

���
�

l̄

�1

1 −

Fth

F
� . �16�

This is direct evidence for the mobility threshold indicating
an appreciable retardation of the kink motion for F�Fth.

The relationship between the parameters uBB=2uAB corre-
sponds to the additive contribution of solute atoms to the
total energy, Eq. �2�, which means the absence of interactions
between these atoms. In this case, the energy u=2uAB may be
attributed to a site containing a B atom instead of attributing
different energies to atomic bonds. This simplifies the calcu-
lations, and Eq. �15� takes the form

Fth =
kT

a
ln�1 + 2c�1 − c��cosh
2uAB

kT
� − 1�� , �17�

which is consistent with the earlier result �7,23�.
It should be noted that Fth remains unchanged upon the

simultaneous change in the signs of uAB and uBB. Positive
values uAB and uBB will be used for illustrating the calcula-
tions. In addition, Fth is invariant with respect to which ma-
trix �consisting of either A or B atoms� is recognized as the
basic one and, correspondingly, to which atoms are consid-
ered as foreign. The arbitrary choice of the matrix formed by
A atoms may be changed to the matrix formed by B atoms.
The expression for the threshold force Fth appears to be the
same for the B1−c�Ac� solid solution after the substitution c
→c�=1−c, uAB→uAB� =uAB−uBB, uBB→uBB� =−uBB.

Expression �17� predicts a noticeable increase in Fth with
decreasing temperature. The same is true for the general case
described by Eq. �15� and illustrated in Fig. 3. The equation

F=Fth�T� determines a line of the dynamic phase transition
with destruction of the mode of motion linear in time. Figure
3 illustrates a modification of the phase diagram due to in-
teractions between solute atoms for a set of varying param-
eters. The threshold driving force increases with increasing
uBB, and, on the contrary, it decreases with decreasing uBB
compared to the noninteractive case uBB=2uAB. The limiting
value of Fth for T→0 is equal to uBB /a, if uBB�uAB, and to
uAB /a, if uBB�uAB.

Let us mention some qualitative features of the concen-
tration dependence of the threshold driving force, which are
of interest for a comparison with experimental data. In the
absence of interactions between solute atoms, the concentra-
tion dependence of the threshold driving force Fth described
by Eq. �17� is of a domelike form symmetric with respect to
the transposition of the components—i.e., to the substitution
c→1−c. Since Fth corresponds to the resistance of fluctua-
tions of the density of solute atoms to the kink motion, it has
the largest magnitude for the intermediate concentration of
solutes, c�1 /2—i.e., for the maximum heterogeneity. How-
ever, the symmetry of the concentration dependence Fth
given by Eq. �17� is a special case and may not be fitted to
experimental data. To describe the asymmetric resistance
force, it is necessary to consider a more general case. The
symmetry of the curve Fth�c� is violated if the interactions
between atoms of different sorts are taken into account, as is
illustrated in Fig. 4.

A remarkable peculiarity of the concentration depen-
dences presented in Fig. 4 is the sharp increase of Fth in the
range of small c. It follows from Eq. �15� that Fth

�2c kT
a
�cosh� 2uAB

kT
�−1� for c→0, so that the slope of the con-

centration dependence at low temperature kT�2�uAB� may
be very steep. In the range c→1 it follows from Eq. �15� that

Fth�2�1−c� kT
a
�cosh� 2�uBB−uAB�

kT
�−1�. Therefore, the concen-

tration dependence Fth for c→1, z=uBB / �2uAB��1, is even
steeper than for small c �the curve 1� and is more flat at
z�1, �curve 3�. As the result, maximum of the concentration
dependence for z�1 is shifted to the side of large c, whereas
for z�1 it is shifted to the side of small concentration,
thereby creating the curve asymmetry.

FIG. 3. The temperature dependence of the threshold driving
force Fth for the concentration of B atoms, c=0.2, and for different
bond energy ratios z=uBB /2uAB: z=1.25 �curve 1�, z=1 �curve 2�,
z=0.75 �curve 3�, z=0.5 �curve 4�, and z=0.2 �curve 4��.

FIG. 4. Plot of the threshold driving force Fth at the temperature
T=0.75uAB /k vs the concentration c of B-type atoms for different
bond energy ratios z=uBB /2uAB: z=1.25 �curve 1�, z=1 �curve 2�,
and z=0.75 �curve 3�.
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This behavior can be compared with the experimental de-
pendence of the yield stress for the Ge1−cSic solid solution on
the concentration of Si atoms �28�. The yield stress, which is
determined by the resistance to the dislocation motion, cor-
relates with the friction force exerted on kinks, which may be
characterized by Fth. This provides insight into the well-
defined domelike shape of the experimental concentration
dependence of the yield stress. A certain asymmetry of the
concentration dependence of the yield stress may be attrib-
uted to a weak repulsion between silicon atoms within the
dislocation core.

V. STATISTICAL PROPERTIES OF THE GENERALIZED
RANDOM POTENTIAL

The fluctuation contribution to the energy of the disloca-
tion core, Eq. �2�, gives rise to a random potential for the
kink motion, whose statistical properties depend on relation-
ships between parameters. In the particular case of noninter-
acting solute atoms uBB=2uAB, the potential values at
different crystal sites are uncorrelated. The correlation is in-
troduced into the generalized random potential of solutes,
Eq. �2�, by interaction of solutes. As shown above, this cor-
relation leads to a quantitative change in the boundary F
=Fth of the normal linear �in time� phase of the kink motion,
which is accompanied by the appearance of a new qualitative
feature, the asymmetry of the concentration dependence of
the threshold driving force Fth.

It is worthy of note that the calculated quantity
�exp���E
	2�−E
	1���� ��=1 /kT� is in fact the generating
function for the energy distribution. It allows the calculation
of the average of any powers �cummulants� of random con-
tributions to the energy of the dislocation core. As an ex-
ample, after a straightforward calculation we obtain

��E
	2� − E
	1��2� =
d2

d�2 ��exp���E
	2� − E
	1������=0

= 2NDE, �18�

where DE=c�1−c�
c�3c+1�uBB
2 +4�1−3c+3c2�uAB

2 −4c�3c
−1�uABuBB� is a “diffusivity” of the random potential along
the energy scale in the course of the kink motion �the path
length expressed in lattice periods, N, plays a role of the time
by analogy with the ordinary spatial diffusion�. In addition, it
determines the high-temperature behavior of the threshold
driving force. As follows from Eq. �15�, Fth�DE / �akT�
when T→�.

VI. ANOMALOUS KINETICS OF KINKS

The qualitative pattern of the anomalous mobility in the
subthreshold interval of loads, which was established for
noninteracting foreign atoms �7,27�, can be extended to the
general case under consideration. The change in the charac-
teristics of the kink motion due to the vanishing of its aver-
age velocity is governed by the contribution of long delay
times at barriers formed by random accumulation of solute
atoms. It turns out that, at F�Fth, the total contribution of
abundant delays at typical or most common barriers �around

the maximum of the spectrum P���� is smaller than the con-
tribution of one the strongest barrier at the path length. As a
result, the path length distribution is unambiguously related
to the asymptotic of the probability of long delay times. In
this case, the evolution of the path length distribution with
time is represented by the so-called Lévy distribution �see,
e.g., �4,15��. The typical dependence of the displacement x
on time t, which provides less detail and is described only by
the characteristic scale of the Lévy distribution function, is
of prime interest for most applications. There is an analogy
with the ordinary diffusion, for which the time dependence
of the typical displacement, x� t1/2, can be found without of
the complete solution of the diffusion equation. Similarly, the
time scaling of the displacement for the anomalous migration
of a particle can be determined in a simple qualitative way.
Let us demonstrate this, remembering that, in the considered
case, the time spent in passing a certain length is determined
by the strongest barrier along the length.

If the probability to encounter a barrier with a delay time
longer than t is P�t�, then the displacement during the time t
will be of the order of the mean distance between such bar-
riers, x�1 / P�t�. For example, the delay time spectrum P�t�
for dilute solid solutions is given by P�t�=�t

�P2�t��dt� with
P2�t� of Eq. �1�. Since only the behavior of the spectrum P�t�
at long delay times is of actual interest, for P�t� it follows
from Eq. �1� that P�t��1 / t� and x�1 / P�t�� t� with �
=FakT / �cu2�. This result, the sublinear regime of the drift
for ��1, was extended by different methods to different
random walk models in �4,6,10,11,24,27� �see also refer-
ences therein�. The exponent � is the most important param-
eter controlling the path length distribution. This exponent is
different for different models and, in particular, it depends on
the type of the random potential correlations �13,14�. De-
tailed calculations for the thermally activated motion of par-
ticles in random potentials showed �4,6,7,11,12,24,27� that
the exponent � depends linearly on the temperature so that it
can be represented as �=T /Tg �in Eq. �1�, Tg=cu2 / �kaF��.
Since the condition for the transition with changing motion
regime is �=1, the temperature T=Tg has the meaning of the
dynamic phase transition temperature.

It can be shown that the linear temperature dependence of
� holds for a wide class of random potentials, including the
potential �2� under consideration, and it has a simple physi-
cal origin. Since the condition of the transition from the nor-
mal to anomalous regime is known �see Eq. �15��, � can be
determined without additional calculations. The use of a
qualitative representation of the arrangement of fluctuation
barriers controlling the process in terms of the “optimal fluc-
tuation method” �29� provides a useful insight into the phys-
ics of the phenomenon.

Let us consider a strong barrier, which is created by a
large fluctuation in the density of solute atoms �see Fig. 2�
and provides a long delay time. The strong barrier consists of
a large accumulation of solute atoms and comprises a large
number of sites of the crystal lattice, N�1. Hence, N is a
large parameter of the theory, enabling simplification of the
calculations. Since only the energy at the maximum of the
potential relief giving the activation energy is of interest, let
us characterize the random accumulation of solutes by the
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following two parameters: a distance l=aN between the
minimum of the prebarrier potential and the maximum and
an increment of the random potential Ea between these
points. The external driving force reduces the barrier height
to

�E = Ea − FaN . �19�

Thermal activation requires for the escape from the well, so
that the delay time of a kink is estimated by the Arrhenius
formula as

t = �* exp
N��a − Fa�
kT

� . �20�

Here, considering the energy of the solute accumulation at
large N�1 to be an extensive quantity, the density of energy
per a lattice site, �a=Ea /N, is introduced; �* is the preexpo-
nential factor, which is of no importance for further consid-
erations and is, in the first approximation, a constant. The
distribution function P�t� of the delay times is determined by
the probability to encounter a well with a given escape time
t. This condition fixes one of the involved random
parameters—for example, N:

N =
kT ln�t/�*�

�a − Fa
. �21�

The energy density �a depends also on intensive quantities,
such as the concentrations of solute atoms in the first and
second valleys on the accumulation size scale, c1 and c2,
respectively. These concentrations do not affect the linear
dependence of N on T and should be chosen in such a way as
to represent the most often occurring accumulations of solute
atoms with the required properties—i.e., from the condition
for the maximum probability P over c1 and c2. The probabil-
ity to meet this accumulation can be expressed as P
�exp�S�, where S is the entropy. The condition for the maxi-
mum of S over c1 and c2 leads to the equations in the optimal
values of c1 and c2, allowing, in principle, for a determina-
tion of the complete arrangement of density fluctuations of
solute atoms controlling the kink mobility. However, this de-
tailed information is not necessary for the determination of
the quantity of interest: the delay time spectrum. Since the
entropy is also an extensive quantity and is additive over the
accumulation size, we have S�N. Then Eq. �21� shows that
the entropy Smax of the optimal fluctuation is proportional to
T ln�t /�*�. This allows a representation of the probability P
in the form

P�t� � exp�Smax� � 
 �*

t
�T/Tg

. �22�

As is easily seen, the scale factor Tg in Eq. �22� coincides
with the temperature of the dynamic phase transition from
the ordinary linear to the anomalous migration regime. Ac-
tually, the quantity Tg characterizes the probability of long
delay times of a kink during its motion along the dislocation.
A large value of Tg means a slowly decreasing probability of
long delay times and, consequently, a long average delay
time ���:

��� = �
0

�

t
dP�t�

dt
dt = �

0

�

P�t�dt . �23�

Moreover, the probability P�t� decreases for T�Tg so slowly
that the integral in Eq. �23� diverges and the average delay
time becomes infinite. The mobility becomes anomalous and,
in this case, the mean displacement x�t� is determined by the
average distance between barriers with the delay time ex-
ceeding t:

x�t� �
�l

P�t�
� �l
 t

�*
�T/Tg

. �24�

Thus, the displacement of a kink increases with time more
slowly than in the case of the ordinary linear drift under the
driving force. The scale parameters �l and �*, which are of
secondary interest, are not determined in the framework of
this simple approach. To obtain rough estimates, one may use
values typical of minimal barriers formed by isolated solute

atoms, �l� l̄�a /c and �*��1.
Since the condition for the transition to the anomalous

kinetics T=Tg corresponds to the average delay time ��� ap-
proaching infinity, it coincides with the previously found
condition determining the threshold value of the driving
force, Eq. �15�, and vice versa, if the driving force is given,
the phase transition temperature Tg can be found from the
equation

F = Fth�Tg� , �25�

where the function Fth�T� is given by Eq. �15�. Therefore,
Fig. 3 represents also the dependence of Tg on the driving
force F and other parameters. At low driving forces F�Fth,
the phase transition temperature behaves as Tg�DE / �kFa�
with DE determined under Eq. �18�.

Formula �24� gives the desired generalization of the ki-
netic law of the kink motion in the correlated random poten-
tial under consideration with an explicit indication of the
temperature dependence of the exponent �=T /Tg. The phase
transition temperature Tg depends, besides the driving force
F, on the mean concentration of solute atoms c and the bond
energies uAB and uBB. The dynamic phase transition from the
normal linear drift of kinks x� t for T�Tg to the anomalous
sublinear regime of motion x� t� with �=T /Tg for T�Tg is
illustrated in Fig. 5.

FIG. 5. A schematic illustration of the dynamic phase transition
as the motion regime changes from the normal �linear in time� drift
x� t to the anomalous sublinear drift x� t� ���1�.
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Figure 6 shows the modification of the kinetic depen-
dences when the driving force F decreases below the thresh-
old value Fth. Curves 2, 3, and 1� calculated according to Eq.
�24� �curve 1� was calculated taking into account interactions
of solute atoms� show a much slower sublinear increase in
the displacement x with time t compared to the linear depen-
dence described by curve 1.

VII. CONCLUSION

In the present paper, the theory of the dislocation kink
motion in a random potential landscape formed by randomly
distributed atoms of a disordered solid solution was devel-
oped. The total energy of the dislocation+kink system plays
a role of the potential, in which the kink migrates. The sta-
tistical properties of the energy of the dislocation core are
described with consideration of short-range interactions be-
tween solute atoms, which can either enhance or reduce ran-
dom potential fluctuations depending on the sign of the in-
teraction. This system can be modeled by a one-dimensional
quasiparticle migrating in a potential, which performs a cor-
related random walk along the energy scale in the course of

the displacement of the quasiparticle. It was shown that a
dynamical phase transition from the linear in time to anoma-
lous sublinear regime of the quasiparticle motion in this po-
tential takes place if the driving force is less than a certain
threshold value Fth. The kinetics of overcoming the barriers
formed by solute density fluctuations along the kink path
determines the threshold driving force Fth and its tempera-
ture and concentration dependences. It should be noted that
the earlier developed theory, which ignores the correlations
in the random potential, is applicable only to a description of
the symmetric concentration dependences of the threshold
driving force, whereas the present theory allows a descrip-
tion of the general behavior of more realistic systems.

Due to the fluctuation nature of the kink retardation, the
calculated increase in the threshold driving force appeared to
be strongest in the intermediate concentration range of a
solid solution corresponding to the maximum of the material
disorder and it approaches zero for any pure component. This
behavior provides an explanation for the pronounced dome-
like shape of the experimental concentration dependence of
the yield stress in the Ge1−cSic solid solution �28�.

The quasiparticle kinetics in the anomalous regime is con-
trolled by the spectrum of extremely long delay times related
to seldom strong fluctuations of the random potential. The
statistics of such fluctuations can be efficiently characterized
by clear arguments of the “optimal fluctuation method” de-
vised in the theory of disordered systems. In the present pa-
per, these arguments were used for obtaining the distribution
of long delay times of quasiparticles at traps formed by fluc-
tuations of the density of solid solution atoms. The tempera-
ture Tg of the dynamic phase transition with vanishing of the
average velocity of the quasiparticle motion was calculated
depending on the parameters of the system. The kinetic law
of the quasiparticle motion, x�t�� tT/Tg, for the anomalous
range T�Tg was substantiated. As is seen from the derived
formulas and presented figures, the correlations in the ran-
dom potential noticeably modify the characteristics of the
anomalous kinetics of quasiparticles. This may be attributed
to the crucial role of strong fluctuations of the random po-
tential caused by large deviations of the density of solute
atoms from its mean value.

Finally, let us mention that the extension of the theory to
the more general correlated random potential enables appli-
cations to a wider class of various systems, such as steps at
crystal facets, domain boundaries in two-dimensional phases
on a substrate, biological macromolecules, etc.
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